IMPACT ENGINEERING: Fundamentals, Experiments and Nonlinear Finite Elements

Marcilio Alves

www.impactbook.org, ISBN: 978-85-455210-0-6, version 1, 2020

Alves, Marcilio Impact engineering: fundamentals, experiments and nonlinear finite elements / M. Alves - Sao Paulo: Copyright from author, 2020. 444 p.

ISBN 978-85-455210-0-6

1.Impact engineering 2.Structural impact 3.Vibrations 4. Waves 5. Nonlinear finite elements 6. Experimental mechanics

This book is dedicated to my wife Isabel and to my children Taís and Pedro!

Contents

1	Introduction to structural impact		
	1.1	Features of impact phenomena	6
		1.1.1 Inertia effects	6
		1.1.2 Material response	7
		1.1.3 Transient effects	9
		1.1.4 Stability	10
		1.1.5 Failure	11
	1.2 Crashworthiness		12
	1.3	Experimental techniques	14
	1.4	Analytical and computational methods	18
		1.4.1 Analytical versus numerical solutions	19
	1.5	A bit of history	21
	1.6 Engineering ethics		22
	1.7 Book organization		24
	1.8	Problems	25
2	Rigid body impact		
	2.1	Impulse and momentum of a single particle	30
	2.2	Coefficient of restitution	34
	2.3	Oblique central impact	39
	2.4	In plane rigid body dynamics: eccentric impact	43

	2.5	Filmin	g impact events	50
		2.5.1	Motion analysis	52
	2.6	Closur	e	52
	2.7	Proble	ms	53
3	One-dimensional elastic wavesand impact of bars			57
	3.1	Strain-	-stress waves	58
	3.2	Axial collinear impact of two equal semi-infinite bars		66
	3.3	Reflection of waves		
	3.4	Impact of two finite bars		70
	3.5	Free vibration of bars		
	3.6	Forced vibration of bars		81
	3.7	Visco-	elastic waves: dispersion	85
		3.7.1	Geometrical dispersion	87
	3.8	Measu	rement of motion	89
		3.8.1	Foil strain gauges	90
		3.8.2	Accelerometer and load cells	93
		3.8.3	Laser Doppler vibrometer	94
	3.9	9 Closure		96
	3.10	Proble	ms	96
4	Elasto–dynamics of beams		99	
	4.1	Equilibrium equation for beams		100
	4.2	Free vibration		103
	4.3	Dynamics of elastic beams to initial conditions		
	4.4	Impact of a mass on a beam		
	4.5	Dynamic response of beams to a force		
	4.6	5 Flexural waves		119
		4.6.1	Rayleigh and Timoshenko beam theories	121
	4.7	Digital	signals	123
		4.7.1	Fourier series and Fourier transform	127
		4.7.2	Discrete Fourier transform	133
		4.7.3	Filters	136
	4.8	Closure		138
	4.9	Problems		138

5	Visco–plastic dynamics of beams and plates		141	
	5.1	Plastic behaviour of beams	142	
		5.1.1 Perfectly plastic material model	142	
		5.1.2 Beam collapse load	144	
		5.1.3 Yield surface	148	
	5.2	Central impact in a beam	152	
	5.3	3 Beam loaded by a pressure pulse		
	5.4	Equivalent pulse		
	5.5 Transverse shear effects			
	5.6 Large displacements effects		171	
5.7 Strains and strain ra		Strains and strain rate in beams	175	
		5.7.1 Strains	176	
		5.7.2 Strain rate	179	
	5.8 Circular plates impulsively loaded		180	
		5.8.1 Equilibrium equations	181	
		5.8.2 Critical velocity	184	
		5.8.3 Motion after severance — moving hinge phase	185	
		5.8.4 Motion after severance — hinge at the center	188	
		5.8.5 Rigid body motion	190	
	5.9	Circular plates under low velocity impact of a mass	193	
	5.10	10 Plates under high velocity impact of a mass: ballistic limit		
	5.11	5.11 Experiments on beams and plates		
	5.12	5.12 Closure		
	5.13	Problems	202	
6	Axia	l impact in shells and plastic waves	205	
	6.1	Dynamic buckling of a bar	206	
	6.2	Dynamic buckling of cylindrical shells	209	
	6.3	Plastic waves in bars	210	
	6.4	Plastic waves in cylindrical shells	218	
		6.4.1 Peak load in a tube	222	
	6.5	Progressive buckling of cylindrical shells	224	
	6.6	Progressive buckling of rectangular tubes	229	
	6.7	Experiments with shells: buckling transition	236	
	6.8	Closure	241	
	6.9	Problems	241	

7	Mat	erial be	haviour and failure	243		
	7.1	1 Stress-strain definitions				
	7.2	Tensile	tests	250		
		7.2.1	Equivalent (effective) stress and strain	252		
		7.2.2	Necking	254		
	7.3	Compre	ession tests	256		
	7.4	4 Medium strain rate tests		257		
	7.5	High strain rate tests		258		
		7.5.1	Dispersion	263		
		7.5.2	Friction correction	264		
		7.5.3	Inertia and punching effects correction	266		
	7.6 Material constitutive laws		267			
	7.7	Inverse	modelling and image analysis	274		
	7.8	Yield ci	riterion	276		
		7.8.1	Normality and consistency condition	283		
		7.8.2	lsotropic strain hardening	285		
	7.9	Materia	al failure	286		
	7.10	7.10 Closure				
	7.11	Probler	ns	293		
8			Linear Finite Elements Analysis 2			
8	Line	ar Finit	e Elements Analysis	295		
8	Line 8.1	ar Finit The fin	e Elements Analysis ite element method in dynamics: explicit and implicit	295 296		
8	Line 8.1 8.2	ar Finito The fin Finite e	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams	295 296 303		
8	Line 8.1 8.2	ar Finito The fin Finite e 8.2.1	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams Quasi–static loads	295 296 303 303		
8	Line: 8.1 8.2	ar Finit The fin Finite e 8.2.1 8.2.2	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams Quasi–static loads Dynamic loading: forced response	295 296 303 303 312		
8	Line: 8.1 8.2	ar Finit The fin Finite e 8.2.1 8.2.2 8.2.3	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams Quasi–static loads Dynamic loading: forced response Modal analysis	 295 296 303 303 312 315 		
8	Line: 8.1 8.2 8.3	ar Finite The fin Finite e 8.2.1 8.2.2 8.2.3 An axis	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams Quasi–static loads Dynamic loading: forced response Modal analysis symmetric finite element	 295 296 303 303 312 315 316 		
8	Line: 8.1 8.2 8.3	ar Finite The fin Finite e 8.2.1 8.2.2 8.2.3 An axis 8.3.1	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams Quasi-static loads Dynamic loading: forced response Modal analysis symmetric finite element Basic formulas	 295 296 303 303 312 315 316 317 		
8	Line: 8.1 8.2 8.3	ar Finite The fin Finite e 8.2.1 8.2.2 8.2.3 An axis 8.3.1 8.3.2	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams Quasi-static loads Dynamic loading: forced response Modal analysis symmetric finite element Basic formulas Rectangular finite element	295 296 303 312 315 316 317 320		
8	Line: 8.1 8.2 8.3	ar Finite The fin Finite e 8.2.1 8.2.2 8.2.3 An axis 8.3.1 8.3.2 8.3.3	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams Quasi-static loads Dynamic loading: forced response Modal analysis symmetric finite element Basic formulas Rectangular finite element Isoparametric formulation	 295 296 303 303 312 315 316 317 320 322 		
8	Line: 8.1 8.2 8.3	ar Finite The fin Finite e 8.2.1 8.2.2 8.2.3 An axis 8.3.1 8.3.2 8.3.3 8.3.4	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams Quasi-static loads Dynamic loading: forced response Modal analysis symmetric finite element Basic formulas Rectangular finite element Isoparametric formulation Numerical integration	 295 296 303 312 315 316 317 320 322 325 		
8	Line: 8.1 8.2 8.3	ar Finite The fin Finite e 8.2.1 8.2.2 8.2.3 An axis 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams Quasi-static loads Dynamic loading: forced response Modal analysis symmetric finite element Basic formulas Rectangular finite element Isoparametric formulation Numerical integration Stress calculation	 295 296 303 312 315 316 317 320 322 325 328 		
8	Line: 8.1 8.2 8.3	ar Finite The fin Finite e 8.2.1 8.2.2 8.2.3 An axis 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 Closure	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams Quasi-static loads Dynamic loading: forced response Modal analysis symmetric finite element Basic formulas Rectangular finite element Isoparametric formulation Numerical integration Stress calculation	 295 296 303 312 315 316 317 320 322 325 328 329 		
8	Line: 8.1 8.2 8.3 8.4 8.5	ar Finite The fin Finite e 8.2.1 8.2.2 8.2.3 An axis 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 Closure Problem	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams Quasi-static loads Dynamic loading: forced response Modal analysis symmetric finite element Basic formulas Rectangular finite element Isoparametric formulation Numerical integration Stress calculation	 295 296 303 312 315 316 317 320 322 325 328 329 329 329 		
8	Line: 8.1 8.2 8.3 8.4 8.5 Non	ar Finit The fin Finite e 8.2.1 8.2.2 8.2.3 An axis 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 Closure Probler	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams Quasi-static loads Dynamic loading: forced response Modal analysis symmetric finite element Basic formulas Rectangular finite element Isoparametric formulation Numerical integration Stress calculation ems Tinite Elements Analysis	 295 296 303 312 315 316 317 320 322 325 328 329 329 331 		
8	Line: 8.1 8.2 8.3 8.3 8.4 8.5 Non 9.1	ar Finit The fin Finite e 8.2.1 8.2.2 8.2.3 An axis 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 Closure Problem	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams Quasi-static loads Dynamic loading: forced response Modal analysis symmetric finite element Basic formulas Rectangular finite element Isoparametric formulation Numerical integration Stress calculation ens Finite Elements Analysis ear truss element	 295 296 303 312 315 316 317 320 322 325 328 329 329 329 331 332 		
8	Line: 8.1 8.2 8.3 8.3 8.4 8.5 Non 9.1 9.2	ar Finite The fin Finite e 8.2.1 8.2.2 8.2.3 An axis 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 Closure Problem linear F Nonline Newtor	e Elements Analysis ite element method in dynamics: explicit and implicit elements for beams Quasi-static loads Dynamic loading: forced response Modal analysis symmetric finite element Basic formulas Rectangular finite element Isoparametric formulation Numerical integration Stress calculation ens Tinite Elements Analysis ear truss element n-Raphson procedure	 295 296 303 312 315 316 317 320 322 325 328 329 329 329 331 332 337 		

		9.3.1 Tangent matrix	346	
	9.4	One dimensional computational plasticity	347	
		9.4.1 Unidimensional return mapping (radial) algorithm	351	
	9.5	Kinematics of large deformations	354	
		9.5.1 Rate of deformation	358	
	9.6	Stresses	359	
	9.7	Stress rates	360	
	9.8	Plastic deformation gradient	363	
	9.9	Computational plasticity – three dimensional case	364	
	9.10	Closure		
	9.11	Problems	367	
10	10 Scaling			
	10.1	Size in nature	370	
	10.2	Relating model to prototype	372	
	10.3	Analytical example	378	
	10.4 Numerical example			
	10.5 Model and prototype made of different materials			
	10.6 Geometrically distorted scaled models			
	10.7	Scaling of distorted models using finite elements	393	
	10.8	Closure	395	
	10.9	Problems	395	
11	11 Impact engineering			
	11.1	Tyre impact	398	
		11.1.1 Experimental and numerical set-up	399	
		11.1.2 Results	401	
	11.2	Optimizing a compressor to resist a fall	402	
	11.3	High velocity impact in metal plates	404	
		11.3.1 Material properties and ballistic tests	405	
		11.3.2 Finite element model	407	
	11.4	Ship collision	409	
		11.4.1 T cross-section beams	413	
		11.4.2 Frontal ship collision against rigid wall	415	
		11.4.3 Lateral ship-to-ship collision	416	
	11.5	Collision of a car against a guardrail	417	
		11.5.1 Collision against a concrete barrier	423	
	11.6	Final conclusions	424	
	11.7	Problems	425	

Preface

The subject of Impact Engineering is very appealing for engineers, perhaps because it deals with extreme loading of structures, associated with material failure, high noise, explosions, car, train, plane and even ship crashes. It is not surprising then that Impact Engineering is a complex field of mechanical analysis and where one requires an increasing specialized degree on visco-plasticity, wave propagation, buckling, material behaviour, experimental mechanics, numerical methods, among others.

All these aspects are very difficult to be mastered, specially in a world where one requires more and more a high degree of specialization. It is bearing in mind this context and those alluded difficulties that I set myself the task of writing a book on Impact Engineering that could enable the reader to gain a broader knowledge on the subject from a single volume.

To this end I had to school myself on various issues and perhaps this justifies not only the broad coverage of the book but also the some fifteen years it took me to write it.

I paid special attention to issues such as formatting, figures quality, writing style, no equation or figure numbering, citations along the text, etc. I also picked up the subjects in a way to cover as much as possible the most important areas of Impact Engineering. The reader will find here theory, experimental mechanics and finite elements. It is so that one can learn such diverse aspects as Fourier Signal Analysis, Vibration, Wave Propagation, Material Testing, Newton–Raphson procedures, Plasticity, Non-linear finite elements and so on.

This book was written keeping in mind students and professionals who struggle for a better, fair and peaceful society. I did not resist adding comments and problems on ethics. This is very important these days and more so in a field where one can work in the gray area between protecting people and cargo or damaging them.

During writing it became clear to me the responsibility an author has in conveying the contents of a book in an accurate form. I struggled to do so but I apologise in advance for any mistake or misprint the reader finds in the present volume. At the same time I am thankful if they are brought to my attention for the benefit of future versions.

The present book was followed closely, since the early days, by Prof. Dora Karagiozova, from the Bulgarian Academy of Science, to whom I pay here my homage for being supportive of this idea. Details on buckling and wave propagation benefit from many of her articles and from the discussions we have had. Chapter 6, on buckling of shells, is co-authored with Prof. Karagiozova.

The book was also inspired by the educational attitude towards research and engineering of Prof. Norman Jones; I owe him a lot of what I had learned in the field.

All the beauty and complexity of Computational Mechanics I learned stemmed from the courses taught together with Dr. Larissa Driemeier. Her commitment to an elucidation of all the intricate aspects of non– linear finite elements served as an example to me and it is reflected in this book, specially in Chapter 9, which she co–authors.

I should mention the late Prof. Carlos Alberto Nunes Dias, who was very sharp in his approach to education on finite elements, numerical methods and vibration.

I take the opportunity to thank all the present and past members of the Group of Solid Mechanics and Structural Impact, in particular Dr. G.B. Micheli, Dr. R.E. Yoshiro, Dr. M.A.C. Gonzales, Dr. R.C. Santiago, Dr. R.T. Yamassaki, M.Eng. R.R.V. Neves, Dr. L. Mazzariol, Dr. A. de Lima, Dr. P.B. Ataabadi, M.Eng. M.H. Shaterzadehyazdi, Eng. B. Mussulini, Eng. M. Duarte and V. Cruz. I thank also Dr. R.T. Vargas, Dr. R.T. Moura, Prof. M.L. Bitencourt, Prof. R.J. Marczak, Prof. P.A.M. Rojas, Prof. S.P.B. Proença, Prof. E.A. Fancello, Prof. P.T.R. Mendonça, Dr. R.S. Birch, Prof. M. Langseth, Prof. A.H. Clausen, Prof. M. Brünig, Prof. T.A.H. Coelho and Prof. F.P.R. Martins.

The support of my Department of Mechatronics and Mechanical Systems Engineering, Polytechnical School and University of São Paulo were fundamental to the completion of this work. Special thanks go to all my co–authors of the various articles we wrote, some of which served as a basis for sections of this book. The Brazilian Research Agencies, FAPESP, CNPq and FINEP are here acknowledged for their financial support to my research.

I am forever greatly indebted to my father David, my mother Luiza, my sister Marilane and my nieces and nephews. They were all fundamental to the completion of this book and here goes my sincere words of thanks to them.

It was the continuous support of my wife, Isabel, my daughter Taís and my son Pedro that enabled this task to be now accomplished.

About the author

Marcilio Alves graduated in Mechanical Engineering, Federal University of Santa Catarina, Brazil, in 1983, where he also obtained his Master Degree. His Doctoral Degree is from The University of Liverpool Impact Research Centre in 1996 under the guidance of Prof. N. Jones. Back in Brazil, he established at the University of So Paulo, the Group of Solid Mechanics and Structural Impact. He obtained various grants, which supported his research activities in the areas of structural impact, material characterisation and non-linear finite elements. He published many articles in scientific journals and conferences, covering theoretical, experimental and numerical aspects of non-linear dynamics. He edited four books on Structural Impact and Solid Mechanics, established a biennial cycles of conferences in Solid Mechanics and in Impact Loading of Lightweight Structures. He is the Editor-in-Chief and Founder of the Latin American Journal of Solids and Structures and acts in the Editorial Board of the International Journal of Impact Engineering and of the Journal of Theoretical and Applied Mechanics. He was a United Nation Brazilian observer on the Working Group of Vehicle Harmonization and the first president of the International Society of Impact Engineering. He supervised dozens of students at different levels. He has been publishing with authors from different universities of Brazil, UK, Germany, Bulgaria, China, South Africa, Belgium, Australia and Norway.